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Parallel Implementations of Preconditioned
Conjugate Gradient Methods

Youcef Saad* and Martin H. Schultz*

-Abstract. We consider few different implementations of classical itertive methods
on parallel processors with the purpose of studying how multiprocesso architecture
affects performance. The framework is that of general nonsymmetric I near systems
that arise from the discretization of partial differential equations and iwe concentrate
on the solution methods based GMRES1 a conjugate gradient-like method, combined
with well-known preconditionings. The architectures considered are shared memory
machines and loosely coupled linear or mesh connected arrays. /,, •
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1. Introduction (
One of the main issues in today's rapidly advancing parallel computing technology

is to develop numerical algorithms for solving large-scale scientific problems that can
take advantage of parallelism. There are basically two approaches towards achieving this
goal. The first consists of attempting to discover new ways in which a given classical
algorithm can be implemented in order to exploit its inherent parallelism. A second
approach is to attempt to develop completely new algorithms, which may have no
practical value in the one-processor case but are highly parallel and therefore attractive
in a parallel environment. Optimal algorithm selection may depend on many machine
parameters including the number of processors relative to the size of the problem to be
solved. For example when solving a banded linear system, a parallel implementation
of Gaussian elimination may be perfectly suitable if the number of processors is small
relative to the bandwidth, but a different method, such as cyclic reduction, may be
better otherwise, see [5, 7].

In this paper we will see these two approaches in action for the problem of solv-
ing general large sparse linear systems. We place ourselves in the framework of large
nonsymmetric linear systems that arise from the discretization of partial differential
equations. Among the best methods for handling these systems are the conjugate gradi-
ent like methods combined with some preconditioning techniques [2]. We have selected
the GMRES algorithm [6] as the conjugate gradient type method and a simple ILU
technique as the preconditioner. In fact our analysis can be extended to all conjugate
gradient accelerators and to many of the well-known preconditionings techniques, as
well as to the more traditional iterative methods like SOR and SSOR.

Yale University, Computer Science Department, New Haven Connecticut. This work was supported in part
by by ONR grant N00014-82K-0184 and in part by a joint study with IBM/Kingston



One of the main difficulties in using preconditioning conjugate gradient type meth-
ods on parallel machines lies in the backward and forward solution algorithms associ-
ated with the preconditioner. When a natural ordering of the unknowns is used in the
discretization, these triangular solves have the reputation of being very sequential in
nature, although in reality it is only their classical implementation which is sequential.
In the context of vector computers, this particular problem is a serious one and has
been the subject of much recent research.

We will see that in a parallel computing environment, this difficulty can be handled
in two different ways. First, one can use a pipelined version of the forward and backward
solutions. For the natural ordering this can achieve a speed-up of the order of k, where k,
the number of processors, does not exceed n, the number of grid points in one direction.
To achieve higher speed-ups one must resort to a second approach based on different
orderings of the unknowns. For illustration, we will examine two such orderings: a line
red-black ordering and a natural red-black ordering. The degree of parallelism increases
from the natural to the line red-black and natural red-black orderings thus allowing
for higher speed-ups for the backward and forward solution algorithms. However, the
overall efficiency of the preconditioned conjugate gradient method depends also on the
quality of the preconditioning which is related to the ordering in a nonobvious way.
By way of contrast, the SOR iterative method has the same rate of convergence for all
three orderings. Nevertheless, experience suggests that for the preconditioned conjugate
gradient type methods the gain in efficiency due to higher degree of parallelism will
generally outweigh the loss incurred by a smaller convergence rate [I]-

2. Preconditioned GMRES in parallel processing.

The GMRES algorithm [6] is an effective conjugate gradient like algorithm for
solving general large sparse linear systems of equations of the form

Ax=f. (2.1)

Assuming a preconditioner Ml is used on the left, see [2], we will be solving instead of
(2.1), the preconditioned linear system

M-Ax =M-if. (2.2)

A brief description of the preconditioned GMRES method follows. Details can be found
in [6].

Algorithm: Preconditioned Generalized Minimal Residual Method (GMRES)

(1) Start: Choose xo and a dimension m of the Krylov subspaces.

(2) Arnoldi process:

* Compute ro = M -1 (f - Axo),/3 = IIroll and v, = ro//3.

, For j = 1,2, .., m do:
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hij =(M-1Avi, vi), i =1,2,...,j,

is+, = M-'Avy - h,) i=v

i= 1

hj+,j = jj~j+lll, and
v =+l = vjlhi+lj.

Define Hm as the (m + 1) x m matrix whose nonzero entries are the coefficients
hij.

(3) Form the approximate solution:
e Find the vector Ym which minimizes the function J(y) =IIel - HmYlI,

where el = [1,0,.. 0 ]T, among all vectors of R'.
• Compute xm = xO + Vmym

(4) Restart: If satisfied stop, else set xo - xm and goto 2.

Each outer loop of the above algorithm, i.e., the loop consisting of steps 2, 3, and
4, is divided in two main stages. The first stage is an Arnoldi step and consists of
building a basis of the Krylov subspace Km. The second consists of finding in the affine
space xo + Km the approximate solution Xm which minimizes the residual norm. This
is found by solving a least squares problem of size m + 1, whose coefficient matrix is
upper Hessenberg.

For simplicity, we have omitted several details on the-practical implementation in
the above presentation. For example, in practice one computes progressively the least
squares solution Ym in the successive steps j = 1,... , m of stage 2. Thus, at every step,
after this least squares solution is updated, we obtain at no additional cost the residual
norm of the corresponding approximate solution xk without having to actually compute
it, see [6]. This allows us to stop at the appropriate step.

Method Multiplications Storage

GCR(m-i) - [(3m+5)/2])N + NZ (2m+1)N
ORTHODIR(m-1) (3m+5)/2])N + NZ (2m+1)N

GMRES(m) m+3+l/m)N + NZ (m+2)N

Table 1: Comparison of the costs of GMRES and GCR/ORTHOMIN.
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Method Steps Mult./step

MILU(1) 21 24 N
- ILU(1) 27 24 N

MILU(0) 51 20 N
ILU(O) 82 20 N

Table 2: Comparison of different preconditioners for SIAM
Problem number 4.

The above algorithm is theoretically equivalent to GCR [2] and to ORTHODIR [4]
but is less costly both in terms of storage and arithmetic [6]. Table 1 compares the cost
of each outer loop of GMRES with the similar loops of its equivalent methods GCR and
ORTHODIR. In the table NZ is the number of multiplications needed to perform the
operation M-'Av, for a given vector v. For large enough m, GMRES costs about 1/3
less than GCR/ORTHOMIN in arithmetic while storage is roughly divided by a factor
of two. It can be shown that, in exact arithmetic, the method does not break down or,
to be more accurate, that it breaks down only when it delivers the exact solution.

An important factor of the success of the conjugate gradient like methods is the
preconditioning technique. In the classical incomplete factorization preconditionings,
the matrix M is of the form M = LU where L is a lower triangular matrix and U is
an upper triangular matrix such that L and U have the same structure as the lower
and upper triangular parts of A respectively, or may differ by one or a few diagonals.
To solve a linear system with M requires a forward and a backward triangular system
solution. Thus, each preconditioned GMRES does not cost much more than a typical
non-preconditioned step. However, the number of iterations may be drastically reduced
since M- 1 A is close in some sense to the identity matrix. Therefore, the rationale of
the preconditioning techniques is that if one can reduce the total number of iterations
substantially enough as compared to the incurred overhead, then the combination is
economical. This is illustrated in Table 2 which shows the total number of iterations
for two classes of preconditionings on the example SIAM Problem number 4, [3].

The above summarizes the situation for standard sequential machines. Consider
now the implementation of the preconditioned GMRES algorithm on a parallel machine.
There are mainly four types of computations in the algorithm.

1. matrix by vector multiplications;

2. forward and backward triangular system solutions when computing M- 1 Av,;

3. inner products;

*" 4. linear combinations of vectors.

The operations 3 and 4 are highly parallelizable. Moreover, the most expensive
part of the computation is in phase (2) of GMRES which builds the Arnoldi vectors
by basically a modified Gram-Schmidt process. Much parallelism can naturally be
exploited in this phase but we will skip the details. Operation 1 depends fundamentally
on the structure of A, but is generally a parallelizable one.
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The greatest apparent difficultyj.ies in the second type of computation: the classical-
implementations of the forward and backward solutions are highly sequential. We will
show in the following sections how to handle this difficulty.

3. Architectures
There are essentially two modern approaches when building parallel computers.

The first one, which we will refer to as the "big gun approach", is to build a tightly
coupled machine consisting of a certain number of shared resources. The block diagram
in Figure 1 illustrates such a machine which has the following features:

" k identical processors each having its own local memory;

* A global shared memory;
" A global broadcast bus.

Shared Memory

B US

1 2 3 4 5 6 7 8

Figure 1: A Model of Global Shared Resources.

We will denote by B the bandwidth of the broadcast bus, and by b the bandwidth of
each processor, both expressed in megawords per second. The speed of each arithmetic
unit is denoted by s and is expressed in megafiops, i.e., in millions of floating point
operations per second. It is usual that the ratio of the bandwidth B over b satisfies the
condition

1 < B k* <k,

which means that k* processors can access the bus simultaneously. In this paper we
will assume for simplicity that B = b, i.e., k* = 1. This does not affect our qualitative

* .-- results.
It is also desirable, but not always the case, that

s> b

* which expresses that the arithmetic units are capable of processing data at the maximum
rate allowed by their bandwidths.

A second approach to building modern parallel computers, is what we refer to as
the " little gun approach", which consists of loosely connecting a number of small to
medium size processors. The important difference with the former design is that there
are no shared resources. Moreover, each processor is independent and makes control



decisions of its own. The synchronization is achieved by the availability of data: an
operation is performed when the necessary operands have arrived from the neighboring
processors. Examples include the linear array or ring represented in Figure 2 and the
two-dimensional grid of processors represented in Figure 3. We assume that the grid is
square with vk processors on each side. In both cases we assume that each processor
can send data simultaneously to any number of its nearest neighbors, at a rate of c
megawords per second in each channel.

Figure 2: An 8-processor ring.

Figure 3: A 4 x 4 multiprocessor grid.
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4. Implementing Conjugate Gradient Preconditionings on Multiprocessors

As we mentioned before, the conventional wisdom is that the main difficulty in
implementing preconditioned conjugate gradient like methods on multiprocessors is the
sequential nature of the forward and backward solutions involved in the preconditioning.
In fact, we will show shortly that this is only a superficial problem, i.e., there is some
inherent paralellism in the triangular system solutions that can be exploited. Let us
consider the simplest preconditioner, namely the Incomplete LU preconditioner which
we denote by ILU hereafter. For more details on how such an incomplete factorization
is built the reader is referred to [2]. Here we will concentrate on the parallel implemen-
tation of the conjugate gradient like method using the ILU preconditioner, for example
the combination GMRES/ILU.

Assume that the linear system Ax = f arises from the discretization of a partial
differential equation of the form

Cu = g

on the unit square [0, 1] x [0, 1] with, for example, Dirichlet type boundary conditions,
where Z is a non-self-adjoint elliptic partial differential operator.

It is customary to discretize the above equation using n interior points on each
side of the square leading to a linear system of size N = n2 . Depending on the ordering
chosen for the unknowns, we obtain different preconditionings. We will compare three
such orderings in turn : the natural ordering, the line red-black ordering and the natural
red-black ordering.

4.1. The natural ordering
For the natural ordering, the resulting 5-point discretization of the operator Z is

a block tridiagonal matrix A, with each diagonal block being an n x n tridiagonal ma-
trix, and the codiagonal blocks being diagonal matrices. The corresponding incomplete
factors L and U are lower and upper triangular matrices respectively with L.having the
same structure as the lower part of the matrix A. In the following discussion we will
be concerned only with solving the lower triangular systems. The apparent difficulty in
solving these triangular systems stems from the fact that in the usual organization of
lower triangular system solvers the solution is obtained one coordinate at a time from
top to bottom.

xi ij X i -

Figure 4: Stencil of the lower triangular matrix.
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Some insight as to whether there exists better implementations is provided by con-
sidering the corresponding stencil on the grid, shown in Figure 4. The stencil establishes
the data dependency between the unknowns in the lower triangular system solution. In
this case, the dependency is a particularly simple one: as the arrows indicate, in order
to compute the unknown in position (i,j) we only need the two unknowns in positions
(i- 1,j) and (i,j- 1).

We consider at first a straightforward assignment of the data to the processors: the

grid points are divided up into k equal blocks containing n/k lines each, and are assigned
successively to processors 1,2,... ,k, as is illustrated in Figure 6. From the stencil of L,
it is clear that the grid points that are at the bottom boundary of the grid depend only
on the unknown at their west, because of the Dirichlet boundary condition. Similarly,
the points at the left boundary depend only on their southern neighbors. This suggests
starting by computing xil which does not depend on any other variable, and use this to
get X1.2 and X2,1. Then these two values will in turn enable us to compute the elements
X3,1, X2,2 and X,3. We can see the formation of a wave of computations. The subsequent
steps of the wavefront algorithm can easily be deduced from the illustration of the four
first steps in Figure 6.

4

12 4

Figure 5: The first four steps of the block wavefront forward
sweep

We note that with this algorithm the amount of parallelism is limited to at most n

since simultaneous work can be performed only on the points of a same wave which has a
maximum of n points. The consequence of this is that the time required to perform the

forward solution with any version of this algorithm is at least O(n), since the sequential
time is of the order of O(n 2 ).

To avoid too many communication start-ups, we group the steps and treat square
blocks of size n/k at a time as is illustrated in Figure 5. Thus, in the first step we
will determine all unknowns in the square block xi, with 1 < i j _ n/k. In step two
we determine the unknowns xi,, in the square blocks in positions (1,2) and (2, 1) of
the block- rid and so on. A total of 2k - 1 such steps are required to complete this
block wavefront algorithm, which corresponds to sweeping all antidiagonals. Each step
consists of

Data Transfer: sending a data packet of size n/k from some of the processors Pi to
their neighbors P+ 1 ;

*Arithmetic: computing one block of (n/k)2 unknowns.

8
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Figure 6: The wavefront approach for the forward sweep.

Let us consider the cost of arithmetic first. Since we assume that we do not overlap
the successive steps of the above algorithm and that we do not overlap communication
and arithmetic, at any given step, some of the k processors will be computing in parallel
a square of n/k unknowns each. Hence the time to perform arithmetic is about

Clearly, the above arithmetic time does not depend on the architecture.
The communication time, on the other hand, clearly depends on the architecture.

In the first step, we have processor 1 send a packet of length n/k to processor 2. Then
in the second step we need to send a packet from processor I to processor 2 and another
packet from processor 2 to processor 3. In general, in step i, i _< k - 1, we need to send
a packet from processor j to processor j + 1, for j = 1 ... ,i. Let us first take the case
of the shared resources model. Using the bus, the th step requires performing i data

9

b•* .



transfers, each of which consists of moving a data packet of size n/k, i.e., each costs
r + -'(n/k). Thus, for the shared resources model, the communication cost of the first
k - 1 steps is approximately

(r r+ !Il nk.+ O~r

B 2B 2

The timings for the steps k, k + 1,... 2k - 1 are identical, except that they are summed
in reverse order. Hence, the total time for the block wavefront algorithm using the bus
is

ts k + k2r +6
B k

It is interesting to determine the best achievable performance: given an arbitrary
number of processors, we would like to know what is the best possible time in which
the forward solution can be achieved. In other words we wish to minimize the above
time with respect to the number of processors k. Differentiating the above function
with respect to k and equating the result with zero we arrive at a third degree equation
whose solution does not have a simple expression. However, it can be easily shown
by using arguments similar to those in [7] that the optimal time which is obtained by
neglecting the middle term in the above expression is a near optimum when n is large

enough. This leads us to an optimal number of processors of the form kpt 6 (n)1/2

and an optimal time of the form

S6 )1/2

topd,S 2 - +3/2+0(n)

The above result is disappointing in that the speed-up is limited to a factor of the order
of 0(n1/2).

Looking at the ring or linear architecture, the only difference is that communication
now takes place between neighboring processors and can be overlapped. Therefore, the
communication time at each of the 2k - 1 steps simplifies into r + (n/k) which brings
the total time to 2n n

tL - + 2kr + 6-.

- One might ask again what is the optimal number of processors and the optimal
time. The answer here is clearly that

.k,". n

and

topi,L [2+ 4 nE .

In other words a linear time can be achieved with a linear array or a ring.

10



We have shown that by a simple reorganization of the forward solution algorithm,
consisting of pipelining in a wavefront approach, a speed-up of the order of n can be
achieved. The wavefront algorithm has an inherent parallelism of at most n which is
precisely the largest width of the waves. Unfortunately, this means that there is no other
implementation on any type of architecture that will achieve a speed-up higher than
0(n). For this reason we do not attempt to show an implementation of this algorithm
for the grid architecture. In case the processor grid has a number of processors that does
not exceed n, then a simple method is to map the 2-D grid into a linear array and use
the wavefront algorithm. Otherwise, if k>>n, we must resort to alternative algorithms
that can attain higher degrees of parallelism. This is our goal for the following sections.

r4.2. The line red-black ordering
In the line red-black ordering we color the lines of unknowns alternatively in red

and black starting from the bottom, see Figure 7, where the red points are represented
by a cross and the black ones by a bullet. We then number the unknowns of the red
lines first, from bottom to top, and then the black unknowns from bottom to top.

-'-X X X X X X X X X X X xX x X XX

•x X X X X X X X X X X XX X X X

- -..... X X x xxx x x X X x X x x x x

Figure 7: Linear array assignment for the line red-black or-
dering

. As is revealed by the corresponding L matrix shown in Figure 8, the first N/2
unknowns, i.e., the red unknowns, can be solved for independently of the black points.
Indeed they form a decoupled linear system of size N/2, consisting of n/2 (independent)
bidiagonal systems. In Figure 7, this means that all the bidiagonal systems associated
with the red points can be solved for first, then their data is used for solving for the
black points.

Assume that each processor contains 2 red points and 2 black points. Considering
arithmetic alone, we can solve for the red points in time 2 which corresponds to solving
n/2 bidiagonal systems in parallel, each of which requires 2(n/k) arithmetic operations.
To get the black points we need to subtract from the second half of the right hand side,
the product of the block (2, 1) of the matrix L as shown in Figure 8 by the vector of

"o•11



?"L-7

Figure 8: The line red-black L matrix

the red unknowns. Then we solve the bidiagonal systems in the same way as for the
red points. This results in a total of 2 for this second phase and a total of

'i:"il. s"n2
3-

ks'

For communication, we need to move n red points across each boundary in one of
the directions north or south. For example, in Figure 7, each processor number j must
move n red data to its neighbor j - 1 which holds the grid points of the partition located
at the south of that held by processor j. For the shared resources model this requires
the time

resulting in an overall estimated time of

n2 kn
ts =3 + kr +

The best achievable time is again worse than linear in n:

n" " kopi

and

tS,op 2n r +

Let us now take up the case of the ring. Here the communication of the n red
unknowns in a given direction of the ring can be overlapped: all processors can send
data in one of the two directions of the ring in parallel. This requires the time

r + n/c.

12
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Hence the total time for the ring is,

ks c

The best achievable time is for k0 pj = n and results in

n n
tR,opi =3- + r + -.

8 C

Observe the big difference in the coefficient r of the communication start-up with that
of the natural ordering.

xxxxxxxxxxxxjxxxx

X 0 0 0 0 0 0 0 0 0 0 01 X0 X

Figure 9: Mesh to processor grid assignment for the red-black
ordering.

Next we examine the case of the two-dimensional grid. The grid points are assigned
in a manner analogous to the previous case: we map the region naturally onto the
processor grid as is shown in Figure 9. An important observation is that each of the
n/2 independent bidiagonal systems of size n is now distributed among Vk processors,
located on the same row of the grid of processors. If a standard forward sweep algorithm
were to be used, it would not be possible to achieve a time better than 0(n), because
this algorithm has intrinsically n steps that are sequential. Note that a similar barrier
problem was encountered in the context of ADI methods in [8]. The remedy considered
in [8] is to resort to substructuring.

The substructuring algorithm can be briefly described as follows. Assume that
we want to solve one lower bidiagonal system Fx = b of size n in x processors, each
of which holds a partition of n/Kc successive rows of the system. Here the K Vk
processors constitute a row of the grid of processors. According to our assumptions
these K processors form a ring. We distinguish three phases in the substructuring
algorithm. The first phase is a variant of Gaussian elimination within each partition,
which involves no interprocessor communication. We perform a forward sweep in each
processor j, j = {1,2,...,i}, on equations (.i - 1)2 + i, i = {2,3,..., 2}, in order to

13
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x x
x x
x x Processor 2
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x x Processor 4
x x
x x

Figure 10: A substructuring lower triangular system solution
on four processors.

eliminate the sub-diagonal elements within each 2 x 1 diagonal block of the bidiagonal
K K

matrix F. The result of the first phase is illustrated in Figure 10 for a system of size 20
distributed in t = 4 processors. There are 6 arithmetic operations for each step of the
elimination, leading to a total of 6n

tI  - (4.1)
KS

There is no communication involved in this first phase.
Observe that the unknowns j!, j - {1,2,...,x}, satisfy an independent bidiago-

nal system of K equations distributed with one equation per processor. In the second
phase we will solve for these unknowns. Since the processors form a ring the total cost,
using a standard forward sweep algorithm is roughly

t 2  (K - 1)(r + 1 + 3). (4.2)
C S

In the third and final phase of the substructuring algorithm, each processor j solves
for the other variables by subtracting multiples of the fill-in columns. This operation
involves no communication, except for the transfer of the variables j! already computed
in phase 2 from processors j to processors j + I for j = {1,2, ... ,Kc - 1}. Therefore, the
cost of the third phase on a linear array or ring is approximately

3U I
t3 - + T + -. (4.3)

KS C

We now describe how to implement the substructuring algorithm to the forward

sweep of the preconditioning. We consider the application of this technique for solving

14
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for the red points first. In the first pass of the preconditioning all the rows of the
processor grid work simultaneously, with no communication between the processors of
different rows. There are independent bidiagonal systems in each row of processors,
each distributed among the K processors of the row. Implementing the first phase is
straighforward and its cost is

n 6n 3n 2

2 K K S ks (4.4)

Implementing the second phase requires more care. We have " independent bidi-
agonal systems, each of size ic, in each row of processors distributed with one equation
per processor. A straight-forward implementation consists in sweeping for all variables
of the first column of subsquares before forward-sweeping in the second column of sub-
squares and so on. However, this is inefficient because only one processor of each row
will be active at any time. In fact, this naive approach would require solving succes-
sively bidiagonal systems of size K each and therefore the time would again be nearly

linear in n. The remedy is pipelining. Processors (*, 1) start sweeping with only one
bidiagonal system each. When the right boundaries of the subsquares are reached, each
processor (*, 1) starts solving a second linear system. Meanwhile processor (*, 2) of the
second column takes over the forward sweep of the first system and so forth. After every
n/i elementary sweeps, we start processing a new system in each processor (*, 1). The
last system is started after a elementary steps. To complete the sweep of each last
system in each row of processors, we need an additional Kc - 1 steps. Therefore, we need
a total of a + Kc - 1 successive elementary steps, each costing t2 , as given by (4.2). The
total time for this second phase is approximately

ti -- (-n +# - 0) r+ -I + 3) (4.5)

The third phase is fully parallelizable and requires a time of

I 3n 2  n
t3 - 2s + r + 2c" (4.6)

Note that we need only one communication start-up by sending all the required un-
knowns at once in the third phase, which is why the term r in (4.3) is not multiplied
by , unlike the other terms.

The above includes only the cost of solving for the red unknowns. To solve for the
black unknowns, each processor needs first to receive nK red points from its northern
neighbor. As can be easily seen, with our assumption that communication can be
overlapped in all channels of a node, this data movement operation can be accomplished
in one pass in which n data are moved in parallel. Thus the communication time is of
the order of ti n

4 +- *
KC

Each black unknown is coupled with two red unknowns which have been already cal-
culated. We then need to remove these two unknowns from every black equation by

15
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subtracting multiples of them from the the corresponding parts of the right hand sides.
This requires a total time of

-i n n 4 2n 2

5" ,° 
_ 2K -8 ks

Finally, we now obtain a system for the black points which is similar to the one
we had for the red points before: " independent bidiagonal systems in each row of
processors. We can solve these equations by substructuring at the cost of (4.6). The
grand total comes to ta = 2(tt + ti +t)+ t + t, or,

11n 2  n /\ I
-- + 2+2 +1 r+( +2 -2 (4.7)

ks \K K ~c

In order to minimize the above time with respect to k we rewrite it as

11n 2  3 +n 2
tG (k) + (r + ) - + (2r + )K + Constant

a8 C K C

which is of the form

tG(k) na-+ + -jV + Constant.

The approximate minimum of the above function of k is achieved for

k. = (2n 2)

and has the value
j . -. r 1-. 3 211 \1 3 "

3 (2.a)1 3 .. = 3 - + 2/3 (4.8)
tG 

n4. 3 1-(+ 2

An argument similar to one used in [7] shows that that tG,. is close to the actual
minimum of tG(k) when n is large.

We point out that a similar substructuring method was used for the alternating
direction method and has led to a very similar result, namely that each step of the ADI

iteration could be achieved in time O(n2/3) on a square grid of processors.

4.3. The natural red-black ordering
A simple way of achieving a higher degree of parallelism is to use an incomi te

factorization of the matrix obtained from the red-black ordering of the unknowns: ,he
unknowns are colored alternatively red and black so that there are no two neighboring
points of the same color and then the points are naturally numbered starting with the
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Figure 11: The red-black L matrix

• XO0 X 0 X • XO0 X • x 0 X o x

X • X • X 0 X • XO0 XO0 X0 XO

• X • X'0 X * X • X • X • X 0 X

•XO XC X XO X • Xe XC X
0X • X 0 X 0 X * X • X 0 X 0XO

Figure 12: Mesh to ring assignment for the red-black ordering

black ones and then the red ones. In effect this amounts to permuting the rows and
columns of the original matrix and then performing the incomplete factorization.

An important feature of the red-black incomplete LU factorization is that the red
points do not depend on the black ones. Therefore, the red unknowns can be solved for
in a trivial way. This can be easily understood by a look at the corresponding L matrix
shown in Figure 11 for a model example: the first N/2 unknowns form a decoupled
linear system which is diagonal. Therefore, one can hope for a speed-up of the order of
0(n 2).

The forward sweep can be organized in a simple way as follows. First we must solve
the diagonal system corresponding to the first n2 /2 unknowns, i.e., the red unknowns.
Then we move some of these unknowns where they are needed and solve for the black

1.
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unknowns. This last phase requires forming a linear combination of the 4 red unknowns
that are neighbors to a given black point and dividing by some coefficient.

With the assignment of Figure 12, it is clear that we must send a distinct data
packet of size n/2 from each processor Pi. to each of its neighbors P+l and P-I. The
time for executing the arithmetic is approximately 2 for the red points solution (aIa
diagonal solve) and " 2 for the black points solution, which comes to a total of 3"2.

M-3
Concerning communication for the shared memory model, we need k successive

data transfers and therefore, the communication time for the shared memory model is
approximately k(" + r). Hence, the total time required for a forward solution in the
case of the red-black ordered incomplete factorization is approximately

tRB,P - k (-1 + r)+ 3n

The above time reaches its minimunm when k is of the order of kp1  = 0(n 1/2) and is
the minimum is approximately top, 0(n3/2).

For a linear array or a ring, the only difference is that we can overlap communication
between successive processors when moving boundary red points to the neighboring
processors. As a result the total communication time simplifies into 2( n + r), i.e., the
total time is roughly:

n 3n 2

Observe that the above time will always be decreasing as k increases. However,
since we cannot use more than n processors in this scheme, the optimal time is actually

.. reached for the maximum allowable number of processors, i.e., for kop, - n and the
-*:. " corresponding time is simply to,, + 2r + = 0(n).

Ai 0 X • X 0 X • X • X • X 0 X 0 X

,"-'',, X • X • X 0 X 0 X • X • X • X

,0' X • X * X • XI • X 0 X•X X
* x x x x • x x xx x

• X e X • x • X • X • Xe X • X

x'" X X 0 X * X • X • X • X • X •

Figure 13: 2-D array assignmnent for the red-black ordering
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We now consider a two-dimensional grid of \/7 x V processors and assign the grid
points in a simple manner by mapping the region naturally onto the processor grid as
is shown in Figure 13. In this situation, the communication demand is reduced by the
fact that we now have to transfer a data packet of size ouly

1in

to each neighboring processor. Therefore, the above communication time becomes

2 (2~~+7T

and the total estimated time for performing the forward solve is approximately

n 3n2

tRE 2-D D +r

An important new feature of the above formula is that it is decreasing as k increases
and reaches its minimum value when k is the maximum possible number of processors for
which this implementation is possible, i.e., k~p = n2. Then the optimal time becomes
simply tpg Pe 1/c + r + 3/s which is independent of n. Of course in a sense this is
deceiving since we have used 0(n 2 ) processors.

5. Summary and Conclusion
In preconditioned conjugate gradient type methods, one needs to solve a system of

the form My =z at every step, where M is usually in factored form M =LU. We have
shown a few different ways of implementing these solves on three model architectures.
The usual incomplete factorizations without extra fill that are associated with natural
orderings of the unknowns offer some degree of parallellism that allows us to speed-up
these solves by a factor of n1/2 for shared global resources and n for rings, where n is the
number of unknowns in each direction. To achieve the higher degrees of parallelism that
we would hope to see with nearest- neighbor multi-dimensional architectures, we need
a different ordering of the unknowns before performing the incomplete factorization.
Thus, using a line red-black ordering, we can solve the above systems in time 0(n2/3 )
on a two-dimensional processor grid, while by using the natural red-black ordering we
can solve them in constant time.

However, we should point out that this is only part of the story in that we have
not considered the impact of different orderings on the rates of convergence of the cor-
responding iterative processes. The rates of convergence are difficult to study from the

a theoretical point of view. Not only is it difficult to get any information on the spectral
condition numbers of the preconditioned matrix M- 1A, but even if these were available
they would be of little help, since the rate of convergence depends on the global eigen-
value distribution more than anything else. Experience shown elsewhere [1] indicates
that, at least for the red-black ordering, the loss in convergence is limited. Moreover,
for the more traditional iterative methods such as SOR, the rate of convergence is
independent of the ordering.



Another aspect to which we have devoted little attention is that in the overall
cost of one step of the preconditioned conjugate gradient method we must add to our
timings of the preconditioning part a term of the form O(n 2 /k) which accounts for the
various other operations as was described in section 2. We have argued in Section 2
that these other parts are highly parallelizable and have ignored the question. In reality,
this is not entirely correct when it comes to considering a large number of processors.
The corresponding formulas which estimate the runing time have to be revised taking
into account which of the various versions of conjugate gradient method we are using.
Moreover, another difficulty is that for very large k the inner products cannot be fully
parallelizable and may yield a deteriorated time of the form O(-log2 k). Our goal
was to show that what is traditionally viewed as a major bottleneck in these methods,
namely the solution of the preconditioning systems My = z, was amenable to parallel
implementation.

A comparison of the performances of the three models shows that the two- dimen-
sional grid of processors allows us to exploit parallelism more efficiently and suffers less
from the impact of communication delays. Clearly, the reason for this is that the prob-
lem we are considering is very much based on nearest neighbor interaction and maps
perfectly onto a grid of processors. This is a common situation with all problems arising
from the discretization of partial differential equations.
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